Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Adv Virus Res ; 112: 1-29, 2022.
Article in English | MEDLINE | ID: covidwho-1763516

ABSTRACT

Reverse genetics is the prospective analysis of how genotype determines phenotype. In a typical experiment, a researcher alters a viral genome, then observes the phenotypic outcome. Among RNA viruses, this approach was first applied to positive-strand RNA viruses in the mid-1970s and over nearly 50 years has become a powerful and widely used approach for dissecting the mechanisms of viral replication and pathogenesis. During this time the global health importance of two virus groups, flaviviruses (genus Flavivirus, family Flaviviridae) and betacoronaviruses (genus Betacoronavirus, subfamily Orthocoronavirinae, family Coronaviridae), have dramatically increased, yet these viruses have genomes that are technically challenging to manipulate. As a result, several new techniques have been developed to overcome these challenges. Here I briefly review key historical aspects of positive-strand RNA virus reverse genetics, describe some recent reverse genetic innovations, particularly as applied to flaviviruses and coronaviruses, and discuss their benefits and limitations within the larger context of rigorous genetic analysis.


Subject(s)
Flavivirus , RNA Viruses , Flavivirus/genetics , Genome, Viral , Positive-Strand RNA Viruses , RNA Viruses/genetics , Reverse Genetics/methods , Virus Replication/genetics
2.
Wien Klin Wochenschr ; 133(21-22): 1208-1214, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1451984

ABSTRACT

BACKGROUND: Antimicrobial stewardship is crucial to avoid antimicrobial resistance in microbes and adverse drug effects in patients. In respiratory infections, however, viral pneumonia is difficult to distinguish from bacterial pneumonia, which explains the overuse of antibiotic therapy in this indication. CASES: Five cases of lung consolidation are presented. Lung ultrasound, in conjunction with procalcitonin levels, were used to exclude or corroborate bacterial pneumonia. CONCLUSION: Lung ultrasound is easy to learn and perform and is helpful in guiding diagnosis in unclear cases of pneumonia and may also offer new insights into the spectrum of certain virus diseases. The use of lung ultrasound can raise awareness in clinicians of the need for antimicrobial stewardship and may help to avoid the unnecessary use of antibiotics.


Subject(s)
Antimicrobial Stewardship , Pneumonia, Viral , Respiratory Tract Infections , Anti-Bacterial Agents/therapeutic use , Humans , Lung/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/drug therapy , Procalcitonin
3.
Viruses ; 13(2)2021 01 28.
Article in English | MEDLINE | ID: covidwho-1058918

ABSTRACT

During infection with positive-strand RNA viruses, viral RNA synthesis associates with modified intracellular membranes that form unique and captivating structures in the cytoplasm of the infected cell. These viral replication organelles (ROs) play a key role in the replicative cycle of important human pathogens like coronaviruses, enteroviruses, or flaviviruses. From their discovery to date, progress in our understanding of viral ROs has closely followed new developments in electron microscopy (EM). This review gives a chronological account of this progress and an introduction to the different EM techniques that enabled it. With an ample repertoire of imaging modalities, EM is nowadays a versatile technique that provides structural and functional information at a wide range of scales. Together with well-established approaches like electron tomography or labeling methods, we examine more recent developments, such as volume scanning electron microscopy (SEM) and in situ cryotomography, which are only beginning to be applied to the study of viral ROs. We also highlight the first cryotomography analyses of viral ROs, which have led to the discovery of macromolecular complexes that may serve as RO channels that control the export of newly-made viral RNA. These studies are key first steps towards elucidating the macromolecular complexity of viral ROs.


Subject(s)
Microscopy, Electron , RNA Viruses/physiology , Viral Replication Compartments/ultrastructure , Virus Replication , Cryoelectron Microscopy , Electron Microscope Tomography , Image Processing, Computer-Assisted , Intracellular Membranes/ultrastructure , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Microscopy, Immunoelectron , RNA, Viral/biosynthesis , Viral Nonstructural Proteins/analysis , Viral Nonstructural Proteins/metabolism , Viral Replication Compartments/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL